Linear Processing for Two-Way Relay Systems with 2x2 STBC

2008년 한국통신학회 하계종합학술발표회, 제주

July 3

Jingon Joung
Outline

- Introduction
 - Communication Scenario
 - Motivation
- System & Signal Model
- Linear Processing
- Optimization
- Simulation Results
- Conclusion and Further Work
Communication Scenario

- **Two-way relay system**

 ![Two-Way communications diagram](image)

 - Two source nodes (sensors) want to exchange their own data
 - **1st step**: two source nodes transmit to relay node
 - **2nd step**: relay node retransmission
 - Amplification and forward (AF)
 - Decode and forward (DF)
 - Etc.
 - **3rd step**: two source nodes receive the retransmitted signal

KAIST
Motivation

- For the AF relay
 - Simple linear processing can improve system performance
 - For two source nodes employing STBC
System and Signal Model

● System model

Source Node 1 (SN1)

\[S_1 = \begin{bmatrix} x_1 & x_2^* \\ x_2 & -x_1^* \end{bmatrix} \]

Source Node 2 (SN2)

\[S_2 = \begin{bmatrix} x_3 & x_4^* \\ x_4 & -x_3^* \end{bmatrix} \]

Time slot 2t

Processing with \(W \)

Time slot 2t+1

● Signal model

■ Channel matrices

\[H = \begin{bmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{bmatrix} \quad G = \begin{bmatrix} g_{11} & g_{12} \\ g_{21} & g_{22} \end{bmatrix} \]

■ Transmitted STBC signal

\[S_1 = \begin{bmatrix} x_1 & x_2^* \\ x_2 & -x_1^* \end{bmatrix} \quad S_2 = \begin{bmatrix} x_3 & x_4^* \\ x_4 & -x_3^* \end{bmatrix} \]
Relaying And Detection

- **Received signal at the RN**
 \[
 Y_R = HS_1 + G^T S_2 + N_R \quad \text{Linear Processing with } W \quad \rightarrow \quad WY_R
 \]

- **Received signal at the SNs**
 - **At SN1**
 \[
 Y_1 = H^T W^T Y_R + R_1
 = H^T W^T (HS_1 + G^T S_2 + N_R) + N_1
 \]
 - **At SN2**
 \[
 Y_2 = GW (HS_1 + G^T S_2 + N_R) + N_2
 \]

- **SNs can cancel self-interference**
 \[
 \bar{Y}_1 = H^T W^T G^T S_2 + H^T W^T N_R + N_1
 \]
 \[
 \bar{Y}_2 = GW HS_1 + GWN_R + N_2
 \]
Proposed Preprocessing W

- Signal model rewritten
 - Received signal model
 \[\bar{Y}_1 = F^T S_2 + Z_1, \quad \bar{Y}_2 = FS_1 + Z_2 \]
 - Effective channel matrix $F = GWH$
 - Colored noise plus AWGN $Z_1 = H^T W^T N_R + N_1$, $Z_2 = GWN_R + N_2$

- Designing of W
 - To avoid noise enhancement $WW^H = I_2$
 - Maximize the received SNR
 - For the SN1 and the SN2
 \[W_1 = \max_{w_1} \left(\frac{E\left[\|F^T S_1\|_F^2 \right]}{E\left[\|Z_1\|_1^2 \right]} \right) \]
 \[W_2 = \max_{w_2} \left(\frac{E\left[\|FS_2\|_F^2 \right]}{E\left[\|Z_2\|_1^2 \right]} \right) \]
 \[E\left[\|F^T S_1\|_F^2 \right] = E\left[\|FS_2\|_F^2 \right] \]
 Independent on W (see the Appendix in paper)
Optimization Problems

- **Cost function**
 \[\|F\|_F^2 = tr \left(F^H F \right) = tr \left(H^H W^H G^H G W H \right) \]
 - Convex with respect to \(W \)

- **Optimal linear processing**
 \[W = \max_W \left(\|F\|_F^2 \right) \]
 - Returns only one out of possible many global maximizers
 - Just rewritten as follows:
 \[W = \max_{W \in \Upsilon} \left(\|F\|_F^2 \right) \]
 - \(\Upsilon \) is a unitary matrix set
Simulation Environments

- **Assumption**
 - Channel state information is perfect at each node

- **BER simulation environment**
 - 2x2 STBC used
 - SNRs of SN and RN are termed SNR_{SN} and SNR_{RN}, respectively
 - Relay processing unitary matrices

\[
\mathcal{Y}_2 = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \right\},
\]

\[
\mathcal{Y}_4 = \left\{ \mathcal{Y}_2, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \right\},
\]

\[
\mathcal{Y}_8 = \left\{ \mathcal{Y}_4, \begin{bmatrix} 1 & 0 \\ 0 & j \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ 0 & j \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ j & 0 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ j & 0 \end{bmatrix} \right\}.
\]
Simulation Results (1/2)

- BER comparison w/o processing and w/ processing in Υ_4

![Graphs showing BER comparison with and without processing for different SNR values.](image-url)
Simulation Results (2/2)

- BER comparison with respect to the preprocessing

![Graph](image)

- $SNR_{SN} = 3$ dB, $SNR_{RN} = 6$ dB
- $SNR_{SN} = 6$ dB, $SNR_{RN} = 9$ dB
- $SNR_{SN} = 9$ dB, $SNR_{RN} = 12$ dB
Conclusion & Further Work

Conclusion
- Linear processing at the RN
- Under the perfect CSI the proposed system achieve better BER performance

Further work
- Channel estimation
- Find an unique or optimal set of linear processing matrix