Inter-Cell Coordinated Napping (CoNap) for Energy Saving in Cellular Networks

Koichi ADACHI, Jingon JOUNG, Sumei SUN, and Peng Hui TAN

Institute for Infocomm Research (I²R), A*STAR, Singapore.

The 9th IEEE Vehicular Technology Society Asia Pacific Wireless Communication Symposium (IEEE VTS APWCS 2012)
Power efficiency (PE) or energy efficiency (EE) has become one of the important metrics of cellular communication systems [1], [2].

Base station (BS) is a major power consumer in the wireless network, i.e., more than 50% of the whole network power is consumed at BSs.

Hence, the network power/energy consumption can be effectively reduced by reducing the power/energy consumption of the BS.
Introduction ~ Inter-Cell Interference ~

- Inter-cell interference (ICI) limits spectrum efficiency (SE) (Figure 1).
- Coordinated multi-point (CoMP) can eliminate the ICI by cooperatively processing users’ signals at multiple BSs [3], [4].
- For the improvement of PE/EE, ICI needs to be carefully dealt with. → CoMP is also effective to improve the PE/EE [5].

Figure 1: Inter-cell interference (a) w/o CoMP (b) w/ CoMP.
Introduction ~ Time-Varying Traffic Load ~

- The traffic load of cellular communication systems has dynamic nature in both time and space (location) as shown in Figure 2 [6].
 - *High traffic load condition*: almost all the resources are used to satisfy traffic demands.
 - No room for power/energy saving.
 - *Low traffic load condition*: a part of the resources is sufficient.
 - Room for power/energy saving.

![Traffic load graph](image)

Figure 2: Time varying traffic load.
Related Works ~ Cell Zooming [7] ~

- Deactivation of several BSs \rightarrow Reduction of unnecessary power consumption during low traffic load conditions.
- By *adjusting/optimizing the parameters* (e.g., transmit power)
 - Coverage area expansion
 - Larger transmit power and/or more resources are necessary \rightarrow large inter-cell interference.

Figure 3: BS deactivation with cell zooming.
Related Works \sim CoMP [8]\sim

- CoMP technologies, e.g., coordinated beamforming
 - Coverage area of deactivated BS can be covered.
 - Optimization of parameters and information exchange among cooperating (active) BSs are necessary \rightarrow Huge overhead & complex.

\textbf{Figure 4:} BS deactivation with CoMP.
Proposed Approach ~ Coordinated Napping ~

- In this paper, we propose “Coordinated Napping (CoNap)” → BSs intermittently transmit the signal in a coordinated manner.
- Each BS selects its mode from “transmit mode (TM)” and “nap mode (NM)” as if it is *flickering*.
 - **TM**: BS transmits the signal to its serving users.
 - **NM**: BS does not transmit signal.
- CoNap is realized by *a general binary flickering pattern matrix* and *a mapping matrix*.

![Figure 5: Flickering with TM and NM.](image-url)
CoNap ~ System Model ~

- Consider a downlink cellular system.

 U : Number of users
 S : Number of time slots.
 M : Number of frequency domain resource blocks (RBs).
 t_{frame} : Length of one transmission period.
 t_{ts} : Length of one time slot, i.e., (t_{frame}/S).

![Figure 6: Frame structure.](image-url)
CoNap ~ BS Clustering ~

- Each BS’s mode (TM or NM) is determined by the flickering pattern.
- The ICI cannot be reduced if each BS randomly selects the flickering pattern (Fig. 7 (a)).
 → BSs are divided into non-overlapping clusters with the size of B (Fig. 7 (b)).

![Diagram](image)

Figure 7: ICI (a) w/o BS clustering (b) w/ BS clustering with $B = 3$.
CoNap ~ General Binary Flickering Pattern Matrix ~

- A general binary flickering pattern matrix with Q-by-S:

$$F_G = \begin{pmatrix}
 f_1^T \\
 \vdots \\
 f_q^T \\
 \vdots \\
 f_Q^T \\
\end{pmatrix} = \begin{pmatrix}
 f_{1,1} & \cdots & f_{1,s} & \cdots & f_{1,S} \\
 \vdots & \ddots & \vdots & & \vdots \\
 f_{q,1} & \cdots & f_{q,s} & \cdots & f_{q,S} \\
 \vdots & & \ddots & & \vdots \\
 f_{Q,1} & \cdots & f_{Q,s} & \cdots & f_{Q,S} \\
\end{pmatrix}, \quad (1)$$

where

$$f_{q,s} = \begin{cases}
 1, & \text{BS is in a TM} \\
 0, & \text{BS is in a NM}
\end{cases} \quad (2)$$

S : Flickering pattern cycle.
Q : Number of patterns → whole pattern is covered by setting $Q = 2^S$.
f_q : S-by-1 flickering pattern binary column vector.
CoNap \sim Mapping Matrix \sim

- A B-by-Q binary mapping matrix M_G:

$$M_G \triangleq (e_{i_1} \cdots e_{i_b} \cdots e_{i_B})^T.$$ \hfill (3)

$$\begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ b-1 & B-b \end{pmatrix}$$

- A selected flickering pattern matrix is obtained as

$$N \triangleq (n_1 \cdots n_b \cdots n_B)^T.$$ \hfill (4)

$$\text{flickering pattern of BS } b$$

$$= (e_{i_1} \cdots e_{i_b} \cdots e_{i_B})^T (f_1 \cdots f_q \cdots f_Q)^T$$

$$= (f_{i_1} \cdots f_{i_b} \cdots f_{i_B})^T.$$
Orthogonal Pattern Assignment

- Each column of N contains only one 1.
- No intra-cluster interference.
- The number of available time slots for each BS is reduced.

$$\mathbf{N}_{\text{orth}}^{(1)} = (e_5 \ e_3 \ e_2)^T \mathbf{F}_G = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix},$$

$$\mathbf{N}_{\text{orth}}^{(2)} = (e_3 \ e_2 \ e_7)^T \mathbf{F}_G = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}.$$ \hspace{1cm} (5)

\textbf{Figure 8}: Orthogonal pattern assignment with $S = B = 3$ (a) $\mathbf{N}_{\text{orth}}^{(1)}$ (b) $\mathbf{N}_{\text{orth}}^{(2)}$.
Network Power Model ~ Traffic Load of BS ~

- The traffic load is calculated as

\[\rho_{b,s} = \frac{1}{M} \sum_{u=1}^{U} w_{u,b,s}. \]

 Number of allocated RBs to user \(u \).

- \(w_{u,b,s} \) is given so that the target rate is satisfied as

\[R_{u}^{\text{tar}} \leq \sum_{b \in C} \sum_{s=1}^{S} w_{u,b,s} R_{u,b,s}. \]

 Achievable rate of user \(u \).

- Since the total number of RBs is \(M \), some of users may not be allocated to sufficient number of RBs to satisfies (7).

- Those users are considered to be blocked.
Network Power Model \sim \text{Power Consumption of BS} \sim

- The power consumption of BS for traffic load $\rho_{b,s}$ is given as [9]

$$P_{tx}(\rho_{b,s}) = (P_{\text{fix}} + \rho_{b,s}P_{\text{dyn}} + P_{\text{PA}}(\rho_{b,s}))P_{\text{loss}}. \quad (8)$$

- P_{fix}: Power consumption at small-signal RF transceiver.
- P_{dyn}: Power consumption at base band interface.
- $P_{\text{PA}}(\rho_{b,s})$: Power consumption at power amplifier (PA) for given traffic load $\rho_{b,s}$.
- P_{loss}: Power loss due to AC-DC, DC-DC converters, and cooling equipment.

- The power consumption during NM is given as

$$P_{\text{nap}} = P_{tx}(0) = P_{\text{fix}}P_{\text{loss}}. \quad (9)$$

- Each value of the consumed power is given as $P_{\text{fix}} = 10.8$ Watt, $P_{\text{dyn}} = 14.8$ Watt, and $P_{\text{loss}} = 23.6\%$ [2].
Network Power Model ~ Energy Consumption of Cluster ~

- Total energy consumption of a cluster during one flickering pattern cycle:

\[
E_c(\{f_{i_b,s}, w_{u,b,s}\}) = t_{ts} \sum_{b \in C} \sum_{s \in \mathcal{S}_{tx,b}} P_{tx}(\rho_{b,s}) + t_{ts}P_{nap} \sum_{b \in C} (S - |\mathcal{S}_{tx,b}|),
\]

\[
\begin{align*}
\text{Energy consumption during TM} & \quad \text{Energy consumption during NM} \\
\end{align*}
\]

\(\mathcal{S}_{tx,b} : \text{Set of time slots with } f_{i_b,s} = 1, \text{ e.g., } \mathcal{S}_{tx,b} = \{b\} \text{ in Fig. 9.}
\]

Figure 9: Energy consumption of cluster.
Simulation Results ~ Simulation Environments ~

- Hexagonal cell layout is considered and cell radius is set to 290 (m).
- Path loss \((128.1 + 37.6 \log_{10} d \text{ with } d \text{ is the distance in km})\).
- Log-normally distributed shadowing loss with the standard deviation of 8 dB.
- For user scheduling, round robin (RR) is used.
- For CoNap, the following mapping matrix is used to generate orthogonal flickering pattern:
 \[M_{\text{fix}} = (e_{i_1} \cdots e_{i_b} \cdots e_{i_B})^T, \] \(11\)
 where \(i_b = 1 + 2^{S-b}\).
- For performance comparison, the following strategies are considered:
 - The conventional system with \(B = 1\), i.e., without flickering,
 - The case when flickering pattern is randomly chosen at each BS (pattern with all 0’s is omitted), i.e., without coordination, and flickering pattern cycle is set to \(S = B\).
Simulation Results \sim\ Average Energy Consumption \sim

- The total energy consumption per BS is shown as a function of the number of users per cell (U/B).
- The average energy consumption is significantly saved by flickering.
- From the figure, the additional energy saving can be obtained by CoNap.
- More that 50% energy saving can be achieved by CoNap.

Figure 10: Average energy consumption per BS (J).
Simulation Results ∼ Average Blocking Probability ∼

- As cluster size B increases, the blocking probability becomes higher.
- For random flickering, the uncoordinated flickering pattern which introduce large interference. → the blocking probability is significantly higher than CoNap.

Figure 11: Average blocking probability.
Conclusion

- Coordinated napping (CoNap) is proposed in this paper.
- Intermittent transmission of multiple BSs within a cluster is performed in a coordinated manner.
- CoNap is realized by
 - A general binary flickering pattern matrix, which includes all the possible flickering patterns,
 - A mapping matrix, which maps flickering patterns to BSs.
- It was shown that the proposed CoNap can significantly reduce the network energy consumption, more than 50%, while satisfying the target rate requirement.
Reference

