Energy-Efficient, Large-scale Distributed-Antenna Systems (L-DAS)

Jingon Joung

Institute for Infocomm Research (I²R)

Agency for Science, Technology, and Research (A*STAR), Singapore

2 May 2014
1 Introduction
 - Green Wireless Communications
 - Efficiency
 - Spectral Efficiency & Energy Efficiency Tradeoff

2 Large-scale Distributed-Antenna Systems (L-DAS)
 - EE of L-DAS
 - EE Maximization Problem
 - Proposed Algorithms
 - Performance Evaluation

3 Conclusion
Index

1 Introduction
- Green Wireless Communications
- Efficiency
- Spectral Efficiency & Energy Efficiency Tradeoff

2 Large-scale Distributed-Antenna Systems (L-DAS)
- EE of L-DAS
- EE Maximization Problem
- Proposed Algorithms
- Performance Evaluation

3 Conclusion
Green Wireless Communications

- Green
 - Reduce energy consumption
 - Reduce CO₂ emission

world-wide energy consumption
Green Information & Communications Technology (ICT)

- ICT is the 5th largest industry in power consumption [1]
- ICT infrastructure consumes 3\% of the world-wide energy consumption [1]
- ICT emits around 2\% of the world-wide CO\textsubscript{2} [1]
Green Wireless Communications

Wireless access communication networks consume significant amount of energy to overcome fading and interferences [2, 3, 4].
The energy is mostly consumed at the **transmitter**, e.g., base station (BS) in cellular networks [4]
Green Wireless Communications

50–80% of transmitter’s power is consumed at **power amplifier (PA)** [5-9]
References

[1] [Fettweis and Zimmermann, 2008]
[2] [Baliga et al., 2011]
[3] [Joung and Sun, 2012]
[4] [Vereecken et al., 2011]
[5] [Gruber et al., 2009]
[6] [Bogucka and Conti, 2011]
[7] [Joung et al., 2012]
[8] [Joung et al., 2013]
[9] [Joung et al., 2014b]
What’s Efficiency

Efficiency: has widely varying meanings in different disciplines

- “refers to the use of resources so as to maximize the production of goods and services” – *economics*
- “the ratio of the work done or energy developed by a machine, engine, etc., to the energy supplied to it” – *dictionary*
- “describes the extent to which time, effort or cost is well used for the intended task or purpose” – *wikipedia*

Efficiency in general

\[\eta \triangleq \frac{\text{valuable resource produced}}{\text{valuable resource consumed}} \]

Efficiency in communications?
What’s Efficiency

Efficiency: has widely varying meanings in different disciplines

- “refers to the use of resources so as to maximize the production of goods and services” – economics
- “the ratio of the work done or energy developed by a machine, engine, etc., to the energy supplied to it” – dictionary
- “describes the extent to which time, effort or cost is well used for the intended task or purpose” – wikipedia

Efficiency in general

\[\eta \triangleq \frac{\text{valuable resource produced}}{\text{valuable resource consumed}} \]

Efficiency in communications?
What’s Efficiency

Efficiency: has widely varying meanings in different disciplines

- “refers to the use of resources so as to maximize the production of goods and services” – *economics*
- “the ratio of the work done or energy developed by a machine, engine, etc., to the energy supplied to it” – *dictionary*
- “describes the extent to which time, effort or cost is well used for the intended task or purpose” – *wikipedia*

Efficiency in general

\[\eta \triangleq \frac{\text{valuable resource produced}}{\text{valuable resource consumed}} \]

Efficiency in *communications?*
Spectral & Energy Efficiencies (SE&EE)

- Valuable resource produced in comm.: \textit{bits}
- Valuable resource consumed in comm.: \textit{frequency, space, time, power, etc.}

SE and EE

- \textbf{SE, b/s/Hz}: number of reliably decoded bits per channel use.
- \textbf{EE, b/s/W = b/J}: number of reliably decoded bits per energy.
Spectral & Energy Efficiencies (SE&EE)

- Valuable resource produced in comm.: \textit{bits}
- Valuable resource consumed in comm.: \textit{frequency, space, time, power, etc.}

\textbf{SE and EE}

- \textbf{SE, b/s/Hz}: number of reliably decoded bits per channel use.
- \textbf{EE, b/s/W = b/J}: number of reliably decoded bits per energy.
Spectral & Energy Efficiencies (SE&EE)

- Valuable resource produced in comm.: \textit{bits}.
- Valuable resource consumed in comm.: \textit{frequency, space, time, power,} etc.

\textbf{SE and EE}

- \textit{SE, b/s/Hz}: number of reliably decoded bits per channel use.
- \textit{EE, b/s/W = b/J}: number of reliably decoded bits per energy.
Ideal SE-EE Tradeoff

- \(\text{SE} = \log_2(1 + \frac{P_{\text{out}}}{\sigma^2}) \): Gaussian signalling, perfectly linear PA [Shannon, 1949]
- \(\text{EE} = \frac{\Omega \cdot \text{SE}}{P_c} \): ideal power consumption model [Verdú, 2002, Chen et al., 2011]

\[P_c = P_{\text{PA}} = P_{\text{out}} \]

[\(P_{\text{out}} \): transmit power; \(\sigma^2 \): noise power; \(\Omega \): total bandwidth]
Ideal SE-EE Tradeoff

\[
SE = \log_2(1 + \frac{P_{out}}{\sigma^2}) \quad \text{Gaussian signalling, perfectly linear PA} \quad [\text{Shannon, 1949}]
\]

\[
EE = \frac{\Omega \cdot SE}{P_c} \quad \text{ideal power consumption model} \quad [\text{Verdú, 2002, Chen et al., 2011}]
\]

- $P_c = P_{PA} = P_{out}$

- $SE = \log_2(1 + \frac{P_{out}}{\sigma^2})$
- $EE = \frac{\Omega \cdot SE}{P_c}$

[P_{out}: transmit power; σ^2: noise power; Ω: total bandwidth]
What is a practical SE-EE tradeoff?

- Practical power consumption model
- PA nonlinearity
- PA efficiency < 100%

Practical SE-EE Tradeoff

\[P_c \gg P_{PA} \gg P_{out} \]
Practical SE-EE Tradeoff

What is a practical SE-EE tradeoff?

- Practical power consumption model
- PA nonlinearity
- PA efficiency < 100%

$P_c \gg P_{PA} \gg P_{out}$
Practical SE-EE Tradeoff

- Quasiconcave and narrow (bad) tradeoff
 [Chen et al., 2011, Héliot et al., 2012, Onireti et al., 2012, Joung et al., 2012, Joung et al., 2014b].
Energy Efficient Technologies

- 50–80% of transmitter’s power is consumed at power amplifier (PA)
Energy Efficient Technologies

Device-Level Approach
Transmitter architecture
PA package structures

world-wide energy consumption
3% ICT energy consumption
wireless networks
transmitter

50%-80% power amplifier
Energy Efficient Technologies

- **Device-Level Approach**
 - Transmitter architecture
 - PA package structures

- **System-Level Approach**
 - Transceiver signal processing
 - IBO/PAPR/DPD/…

-world-wide energy consumption
- 3% ICT energy consumption
- Wireless networks
Energy Efficient Technologies

Device-Level Approach
- Transmitter architecture
- PA package structures

System-Level Approach
- Transceiver signal processing
 - IBO/PAPR/DPD/…

Network-Level Approach
- Network processing
 - SC/HetNet/CZ/CoMP/CoNap/DTX/…

3% ICT energy consumption

World-wide energy consumption

50%-80% power amplifier
EE Techniques [Joung et al., 2014a]

<table>
<thead>
<tr>
<th>Approaches</th>
<th>Methods</th>
<th>Improvement</th>
<th>Challenges</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA Design</td>
<td>linear architecture</td>
<td>L</td>
<td>high cost, large form factor</td>
</tr>
<tr>
<td></td>
<td>parallel architecture</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td></td>
<td>switching architecture</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td></td>
<td>envelope tracking (ET) architecture</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>PA circuit architecture</td>
<td>envelope elimination & restoration (EER/Kahn)</td>
<td>L, E</td>
<td></td>
</tr>
<tr>
<td></td>
<td>outphasing technique (LINK)</td>
<td>L, E</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Doherty technique</td>
<td>E</td>
<td></td>
</tr>
<tr>
<td>Signal Design</td>
<td>clipping</td>
<td>L, E</td>
<td>out-of-band emission</td>
</tr>
<tr>
<td></td>
<td>coding</td>
<td></td>
<td>additional resource, latency,</td>
</tr>
<tr>
<td></td>
<td>partial transmit sequence (PTS)</td>
<td></td>
<td>complexity</td>
</tr>
<tr>
<td></td>
<td>selective mapping (SLM)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>tone reservation (TR)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>tone insertion (TI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PA input/output</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Network Design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>in/out band small cells</td>
<td></td>
<td>infrastructure, overhead signalling,</td>
</tr>
<tr>
<td></td>
<td>distributed antenna system (DAS)</td>
<td></td>
<td>scalability, handover,</td>
</tr>
<tr>
<td></td>
<td>cooperative communications (relay)</td>
<td></td>
<td>interference</td>
</tr>
<tr>
<td>Efficient network topology & protocol design</td>
<td></td>
<td>E</td>
<td></td>
</tr>
<tr>
<td></td>
<td>deploy low power PA or using PA on/off</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1 Introduction
 ■ Green Wireless Communications
 ■ Efficiency
 ■ Spectral Efficiency & Energy Efficiency Tradeoff

2 Large-scale Distributed-Antenna Systems (L-DAS)
 ■ EE of L-DAS
 ■ EE Maximization Problem
 ■ Proposed Algorithms
 ■ Performance Evaluation

3 Conclusion
Motivation

To achieve high SE and EE

- For high SE
 - MU-MIMO: LTE-A beyond Re-7
 - Distributed systems: e.g., coordinated multi-point operation (CoMP), LTE-A Re-11
 - Massive (large) MIMO: recent trend

- For high EE
 - Power control: efficient-power transmission
To achieve high SE and EE

- **For high SE**
 - ✓ MU-MIMO: LTE-A beyond Re-7
 - ✓ Distributed systems: e.g., coordinated multi-point operation (CoMP), LTE-A Re-11
 - ✓ Massive (large) MIMO: recent trend

- **For high EE**
 - ✓ Power control: efficient-power transmission
To achieve high SE and EE

- **For high SE**
 - ✓ **MU-MIMO**: LTE-A beyond Re-7
 - ✓ **Distributed systems**: e.g., coordinated multi-point operation (CoMP), LTE-A Re-11
 - ✓ **Massive (large) MIMO**: recent trend

- **For high EE**
 - ✓ **Power control**: efficient-power transmission
Objectives & Contribution

- Study an L-DAS
- Provide a practical power consumption model
- Formulate an EE maximization problem
- Resolve issue on huge signaling, complexity requirement:
 - Distributed antenna (DA) selection method
 - SINR-threshold-based DA-clustering method
 - MU-MIMO precoding method
 - Optimal and heuristic power control methods
- Verify the EE merit of L-DAS
Energy-Efficient Large-scale DAS (L-DAS)

L-DAS and Signal Model

\[y = H (S \circ W) \sqrt{P} x + n \]

- \(y \): Received signal vector
- \(H \): Channel matrix
- \(S \): Signal matrix
- \(W \): Matrix completion
- \(P \): Power
- \(x \): Transmitted signal vector
- \(n \): Noise vector

User Equipments (UEs)
Distributed Antennas (DAs)

km *km*
L-DAS and Signal Model

\[y = H(S \circ W) \sqrt{P} x + n \]
L-DAS and Signal Model

\[y = H (S \circ W) \sqrt{P} x + n \]

- \(U \) user equipments (UEs)
- \(M \) distributed antennas (DAs)

km

km

BBU

Jingon Joung

Energy-Efficient Large-scale DAS (L-DAS)
L-DAS and Signal Model

\[y = H \left(S \circ W \right) \sqrt{P} x + n \]

- \(U \) user equipments (UEs)
- \(M \) distributed antennas (DAs)
- BBU
- km

km
Energy Efficiency (EE) of L-DAS

\[
\text{EE} (S, W, P) \triangleq \frac{\text{System throughput per unit time}}{\text{Total power consumption}}
\]

- System throughput:
 \[
 R(S, W, P) = \sum_{u \in U} \Omega \log_2 (1 + \text{SINR}_u(S, W, P))
 \]
 \[
 \text{SINR}_u(S, W, P) = \frac{|h^r_u(s_c^u \circ w^c_u)|^2 p_{uu}}{\sum_{u' = 1, u' \neq u} |h^r_u(s_c^u \circ w^c_{u'})|^2 p_{u'u'} + \sigma^2}
 \]

- Total power consumption:
 \[
 C(S, W, P) = f(S, W, P) + g(S, W)
 \]
 \[
 f(\cdot): \text{TPD (transmit power dependent) term}
 \]
 \[
 g(\cdot): \text{TPI (transmit power independent) term}
 \]
Energy Efficiency (EE) of L-DAS

\[
EE(S, W, P) \triangleq \frac{\text{System throughput per unit time}}{\text{Total power consumption}}
\]

- **System throughput:**
 \[
 R(S, W, P) = \sum_{u \in U} \Omega \log_2 (1 + \text{SINR}_u(S, W, P))
 \]
 \[
 \text{SINR}_u(S, W, P) = \frac{|h_u^r(s_u^c \circ w_u^c)|^2 p_{uu}}{\sum_{u' = 1, u' \neq u} |h_{u'}^r(s_{u'}^c \circ w_{u'}^c)|^2 p_{u'u'} + \sigma^2}
 \]

- **Total power consumption:**
 \[
 C(S, W, P) = f(S, W, P) + g(S, W)
 \]
 \[
 f(\cdot): \text{TPD (transmit power dependent) term}
 \]
 \[
 g(\cdot): \text{TPI (transmit power independent) term}
 \]
Energy Efficiency (EE) of L-DAS

\[
EE(S, W, P) \triangleq \frac{\text{System throughput per unit time}}{\text{Total power consumption}}
\]

- **System throughput:**
 \[
 R(S, W, P) = \sum_{u \in \mathcal{U}} \Omega \log_2 \left(1 + \text{SINR}_u(S, W, P)\right)
 \]
 \[
 \text{SINR}_u(S, W, P) = \frac{|h_r^u(s^c_u \circ w^c_u)|^2 p_{uu}}{\sum_{u'=1, u' \neq u} |h_r^u(s^c_{u'} \circ w^c_{u'})|^2 p_{u'u'} + \sigma^2}
 \]

- **Total power consumption:**
 \[
 C(S, W, P) = f(S, W, P) + g(S, W)
 \]
 \[
 f(\cdot): \text{TPD (transmit power dependent) term}
 \]
 \[
 g(\cdot): \text{TPI (transmit power independent) term}
 \]
Cont.

baseband module

ASIC, FPGA, DSP

Examples:
- digital up converter
- digital predistorter
- scrambling
- CRC check
- conv. encoder
- interleaver
- modulation
- IFFT
- CP insertion
- parallel-to-serial

mth RF module at BBU

- eRF module
 - Examples:
 - D/A converter
 - filters
 - synthesizer

- oRF module
 - Examples:
 - E/O converter
 - laser
 - driver
 - modulator

mth distributed antenna (DA) port

- fiber

- \(P_{cc1,m}^{(TPI)}\)
- \(P_{cc2,m}^{(TPI)}\)

baseband unit (BBU)

- \(P_{fix}^{(TPI)}\)
- \(P_{sp1}, P_{sp2}, P_{sig}^{(TPI)}\)

mth Ant.

Mth Ant.

TPD term

\[
f(S, W, P) = \sum_{m \in M} \frac{c}{\eta_m} \left[(S \circ W)P(S \circ W)^H\right]_{mm}
\]

✓ eRF (electric RF)
✓ oRF (optical RF)
TPI term

\[g(S, W) = g_{rf}(S) + g_{bb}(W) + g_{net}(M) + P_{fix} \]

- \[g_{rf}(S) = \sum_{m \in M} \left(P_{cc1,m} + P_{cc2,m} \sum_{u \in U} R_u \right) \max_u s_{mu} \]
- \[g_{bb}(W) = \Omega P_{sp1} \left[\dim(W) \right]^{\beta+1} + \Omega P_{sp2} \]
- \[g_{net}(M) = M\Omega P_{sig} \]
- \[P_{cc1}: \text{eRF} \]
- \[P_{cc2}: \text{per unit-bit-and-second of oRF} \]
- \[R_u: \text{target rate of user } u \]
- \[\beta \geq 0: \text{implies overhead power consumption of MU processing compared to SU-MIMO} \]
- \[P_{fix}: \text{fixed power consumption (e.g., pow supply, AC/DC, DC/DC, and cooling system)} \]
\[
\text{EE} (S, W, P) = \\
\sum_{u \in \mathcal{U}} \Omega \log_2 \left(1 + \frac{|h_u^r (s_u^c \circ w_u^c)|^2 p_{uu}}{\sum_{u' = 1, u' \neq u} |h_u^r (s_{u'}^c \circ w_{u'}^c)|^2 p_{u'u'} + \sigma^2} \right) \\
\sum_{m \in \mathcal{M}} \frac{c}{\eta_m} \left[(S \circ W) P (S \circ W)^H \right]_{mm} \\
+ \sum_{m \in \mathcal{M}} \left(P_{cc1,m} + P_{cc2,m} \sum_{u \in \mathcal{U}} R_u \right) \max_u s_{mu} \\
+ \Omega P_{sp1} \left[\text{dim}(W) \right]^{\beta + 1} + \Omega P_{sp2} \\
+ M \Omega P_{\text{sig}}
\]
Original Problem Formulation

\[\text{Objective: } \text{max } \{ S, W, P \} \]

\[\text{subject to: } \left[(S \circ W)P(S \circ W)^H \right]_{mm} \leq P_m, \ \forall m \in \mathcal{M}, \]

\[R_u(S, W, P) \geq R_u, \ \forall u \in \mathcal{U}, \]

\[p_{u_1u_2} = 0, \ \forall u_1 \neq u_2 \in \mathcal{U}, \]

\[s_{mu} \in \{0, 1\}, \ \forall m \in \mathcal{M}, \forall u \in \mathcal{U}, \]

- **objectives function:** EE
- **per-ant pow constraints** with max-output pow \(P_m \)
- **per-user rate constraints** with a target rate \(R_u \)
- **diagonal structure of** \(P \)
- **DA selection**
Original Problem Formulation

P_0: original problem

\[
\begin{align*}
\text{max} & \quad \text{EE} (S, W, P) \\
\text{s.t.} & \quad [(S \circ W) P (S \circ W)^H]_{mm} \leq P_m, \quad \forall m \in M, \\
& \quad R_u(S, W, P) \geq R_u, \quad \forall u \in U, \\
& \quad s_{mu} \in \{0, 1\}, \quad \forall m \in M, \forall u \in U,
\end{align*}
\]

- objective function: EE
- **per-ant pow** constraints with max-output pow \(P_m\)
- **per-user rate** constraints with a target rate \(R_u\)
- diagonal structure of \(P\)
- DA selection
Original Problem Formulation

P_0: original problem

$$\max \{S, W, P\} \quad \text{EE} (S, W, P)$$

s.t. $$(S \circ W) P (S \circ W)^H \leq P_m, \forall m \in M,$$

$$R_u (S, W, P) \geq R_u, \forall u \in U,$$

$$p_{u_1 u_2} = 0, \forall u_1 \neq u_2 \in U,$$

$$s_{mu} \in \{0, 1\}, \forall m \in M, \forall u \in U,$$

- objective function: EE
- **per-ant pow** constraints with max-output pow P_m
- **per-user rate** constraints with a target rate R_u
- diagonal structure of P
- DA selection
Original Problem Formulation

\[\text{Po: original problem} \]

\[
\begin{align*}
\text{max}_{\{S,W,P\}} & \quad \text{EE} (S, W, P) \\
\text{s.t.} & \quad \left[(S \circ W) P (S \circ W)^H \right]_{mm} \leq P_m, \forall m \in \mathcal{M}, \\
& \quad R_u(S, W, P) \geq R_u, \forall u \in \mathcal{U}, \\
& \quad p_{u_1 u_2} = 0, \forall u_1 \neq u_2 \in \mathcal{U}, \\
& \quad s_{mu} \in \{0, 1\}, \forall m \in \mathcal{M}, \forall u \in \mathcal{U},
\end{align*}
\]

- objective function: EE
- per-ant pow constraints with max-output pow \(P_m \)
- per-user rate constraints with a target rate \(R_u \)
- diagonal structure of \(P \)
- DA selection
Original Problem Formulation

\[P_0: \text{original problem} \]

\[
\begin{align*}
\max_{S,W,P} & \quad \text{EE} (S, W, P) \\
\text{s.t.} & \quad [(S \circ W) P (S \circ W)^H]_{mm} \leq P_m, \ \forall m \in \mathcal{M}, \\
& \quad R_u (S, W, P) \geq R_u, \ \forall u \in \mathcal{U}, \\
& \quad p_{u_1 u_2} = 0, \ \forall u_1 \neq u_2 \in \mathcal{U}, \\
& \quad s_{mu} \in \{0, 1\}, \ \forall m \in \mathcal{M}, \ \forall u \in \mathcal{U},
\end{align*}
\]

- **objective function**: EE
- **per-ant pow** constraints with max-output pow P_m
- **per-user rate** constraints with a target rate R_u
- **diagonal structure of P**
- **DA selection**
Problem Decomposition

Issues to solve the original problem P_o:

- Non-convex objective function
- Integer variables $\{s_{mu}\}$ in the constraints
- Signaling overhead
- Computational complexity

Suboptimal decomposition approach

Step 1: DA selection: S

Step 2: DA clustering

Step 3: Cluster-based optimization (cluster index ℓ)
Problem Decomposition

- **Issues to solve the original problem P_o:**
 - ✓ Non-convex objective function
 - ✓ Integer variables \(\{s_{mu}\} \) in the constraints
 - ✓ Signaling overhead
 - ✓ Computational complexity

Suboptimal decomposition approach

Step 1: DA selection: \(S \)

Step 2: DA clustering

Step 3: Cluster-based optimization (cluster index \(\ell \))
Problem Decomposition

- **Issues to solve the original problem P_o:**
 - ✓ Non-convex objective function
 - ✓ Integer variables $\{s_{mu}\}$ in the constraints
 - ✓ Signaling overhead
 - ✓ Computational complexity

Suboptimal decomposition approach

Step 1: DA selection: S

Step 2: DA clustering

Step 3: Cluster-based optimization (cluster index ℓ)
Problem Decomposition

Issues to solve the original problem P_0:

- Non-convex objective function
- Integer variables $\{s_{mu}\}$ in the constraints
- Signaling overhead
- Computational complexity

Suboptimal decomposition approach

1. **Step 1**: DA selection: S
2. **Step 2**: DA clustering
3. **Step 3**: Cluster-based optimization (cluster index ℓ)
Problem Decomposition

- **Issues to solve the original problem P_0:**
 - ✓ Non-convex objective function
 - ✓ Integer variables $\{s_{mu}\}$ in the constraints
 - ✓ Signaling overhead
 - ✓ Computational complexity

Suboptimal decomposition approach

- **Step 1:** DA selection: S
- **Step 2:** DA clustering
- **Step 3:** Cluster-based optimization (cluster index ℓ)
Problem Decomposition

- **Issues to solve the original problem** P_o:
 - ✓ Non-convex objective function
 - ✓ Integer variables $\{s_{mu}\}$ in the constraints
 - ✓ Signaling overhead
 - ✓ Computational complexity

Suboptimal decomposition approach

Step 1: DA selection: S

Step 2: DA clustering

Step 3: Cluster-based optimization (cluster index ℓ)
 - Step 3-1: Precoding, W_ℓ
 - Step 3-2: Power allocation, P_ℓ
Problem Decomposition

- **Issues to solve the original problem** P_o:
 - ✓ Non-convex objective function
 - ✓ Integer variables $\{s_{mu}\}$ in the constraints
 - ✓ Signaling overhead
 - ✓ Computational complexity

Suboptimal decomposition approach

Step 1: DA selection: S

Step 2: DA clustering

Step 3: Cluster-based optimization (cluster index ℓ)
 - Step 3-1: Precoding, W_ℓ
 - Step 3-2: Power allocation, P_ℓ
Problem Decomposition

- Issues to solve the original problem P_o:
 - ✓ Non-convex objective function
 - ✓ Integer variables $\{s_{mu}\}$ in the constraints
 - ✓ Signaling overhead
 - ✓ Computational complexity

Suboptimal decomposition approach

Step 1: DA selection: S
Step 2: DA clustering
Step 3: Cluster-based optimization (cluster index ℓ)
 - Step 3-1: Precoding, W_ℓ
 - Step 3-2: Power allocation, P_ℓ
Problem Decomposition

- Issues to solve the original problem P_o:
 - ✓ Non-convex objective function
 - ✓ Integer variables $\{s_{mu}\}$ in the constraints
 - ✓ Signaling overhead
 - ✓ Computational complexity

Suboptimal decomposition approach

Step 1: DA selection: S

Step 2: DA clustering

Step 3: Cluster-based optimization (cluster index ℓ)
 - Step 3-1: Precoding, W_ℓ
 - Step 3-2: Power allocation, P_ℓ
Problem Decomposition

- **Issues to solve the original problem** P_o:
 - ✓ Non-convex objective function
 - ✓ Integer variables $\{s_{mu}\}$ in the constraints
 - ✓ Signaling overhead
 - ✓ Computational complexity

Suboptimal decomposition approach

Step 1: DA selection: S

Step 2: DA clustering

Step 3: Cluster-based optimization (cluster index ℓ)
 - Step 3-1: Precoding, W_ℓ
 - Step 3-2: Power allocation, P_ℓ
Problem Decomposition

● Issues to solve the original problem P_o:
 ✓ Non-convex objective function
 ✓ Integer variables $\{s_{mu}\}$ in the constraints
 ✓ Signaling overhead
 ✓ Computational complexity

Suboptimal decomposition approach

Step 1: DA selection: S
Step 2: DA clustering
Step 3: Cluster-based optimization (cluster index ℓ)
 Step 3-1: Precoding, W_ℓ
 Step 3-2: Power allocation, P_ℓ
Step 1: DA Selection

- 20 UEs
- non-activated DA: $M = 400$
- activated DA: $M_u = 1$

- Channel-gain-based greedy AS: RSSI
- Min-dis-based greedy AS: localization info.
Step 2: Selected-DA Clustering

- **SINR-threshold** γ based clustering
- If UE u''’s *distance* from cluster ℓ is shorter than γ, UE u' is included to the cluster ℓ as follows:

 $$\mathcal{U}_\ell = \mathcal{U}_\ell \cup \{u'\}, \text{ if } D(\mathcal{U}_\ell, u') \leq \gamma$$

 ✓ Distance metric between two clusters

 $$D(\mathcal{U}_\ell, \mathcal{U}_{\ell'}) \triangleq \min_{u \in \mathcal{U}_\ell, u' \in \mathcal{U}_{\ell'}} d(u, u').$$

 $$d(u, u') \triangleq \min \left\{ \frac{\sum_{m \in \mathcal{M}_u} |h_{um}|^2 P_m}{\sigma^2 + \sum_{m' \in \mathcal{M}_{u'}} |h_{um'}|^2 P_{m'}}, \frac{\sum_{m' \in \mathcal{M}_{u'}} |h_{u'm'}|^2 P_{m'}}{\sigma^2 + \sum_{m \in \mathcal{M}_u} |h_{u'm}|^2 P_m} \right\}$$
Cont.

(a) $\gamma = 25 \text{ dB}, \ L = 11$

- $\gamma \uparrow \implies \text{cluster size} \uparrow, \ \text{number of clusters} \downarrow, \ \text{inter-cluster interference} \downarrow$

(b) $\gamma = 32 \text{ dB}, \ L = 6$

- $\gamma \downarrow \implies \text{cluster size} \downarrow, \ \text{number of clusters} \uparrow, \ \text{inter-cluster interference} \uparrow$
Cont.

(a) $\gamma = 25 \text{ dB, } L = 11$

- SINR between users in different clusters $> \gamma$
 \implies cluster-based optimization

(b) $\gamma = 32 \text{ dB, } L = 6$

- SINR between users within a cluster $\leq \gamma$
 \implies MU-MIMO precoding
cluster with a single UE

cluster with four UEs

(a) $\gamma = 25\,\text{dB}$, $L = 11$

(b) $\gamma = 32\,\text{dB}$, $L = 6$

- SINR between users in different clusters $> \gamma \implies$ cluster-based optimization
- SINR between users within a cluster $\leq \gamma \implies$ MU-MIMO precoding
Step 3: Cluster-based Optimization

Problem

\(P_\ell: \) cluster-\(\ell \) problem for given \(S^*_\ell, \ell \in \mathcal{L} \)

\[
\begin{align*}
\max_{\{W_\ell, P_\ell\}} & \quad \text{EE} \left(S^*_\ell, W_\ell, P_\ell \right) \\
\text{s.t.} & \quad \left[(S^*_\ell \circ W_\ell) P_\ell (S^*_\ell \circ W_\ell)^H \right]_{mm} \leq P_m, \forall m \in \mathcal{M}_\ell, \\
& \quad R_u(S^*_\ell, W_\ell, P_\ell) \geq R_u, \forall u \in \mathcal{U}_\ell, \\
& \quad p_{u_1u_2} = 0, \forall u_1 \neq u_2 \in \mathcal{U}_\ell.
\end{align*}
\]

- Maximization of EE upper bound
- Computational complexity reduction
- CSI and signaling overhead reduction:
 e.g., \(8000 \Rightarrow 48 \) and \(160 \) in (a) and (b)
Step 3: Cluster-based Optimization Problem

\[P_\ell: \text{cluster-\(\ell\) problem for given } S_\ell^*, \ell \in \mathcal{L} \]

\[
\begin{align*}
\max_{\{W_\ell, P_\ell\}} & \quad \text{EE} (S_\ell^*, W_\ell, P_\ell) \\
\text{s.t.} & \quad \left[(S_\ell^* \circ W_\ell) P_\ell (S_\ell^* \circ W_\ell)^H\right]_{mm} \leq P_m, \forall m \in \mathcal{M}_\ell, \\
& \quad R_u(S_\ell^*, W_\ell, P_\ell) \geq R_u, \forall u \in \mathcal{U}_\ell, \\
& \quad p_{u_1 u_2} = 0, \forall u_1 \neq u_2 \in \mathcal{U}_\ell.
\end{align*}
\]

- Maximization of EE upper bound
- Computational complexity reduction
- CSI and signaling overhead reduction:
 - e.g., 8000 \(\Rightarrow\) 48 and 160 in (a) and (b)
Problem Decomposition

\(P_{\ell,1} \): Precoding matrix \(W_\ell^* \) for fixed \(S_\ell^* \) and \(P'_{\ell} \)

\[
\max_{\{W_\ell, P_\ell\}} \quad \text{EE} (W_\ell, P'_\ell)
\]

s.t.
\[
\begin{align*}
\left[(S_\ell^* \circ W_\ell^*) P_\ell (S_\ell^* \circ W_\ell^*)^H \right]_{mm} & \leq P_m, \forall m \in \mathcal{M}_\ell \\
R_u(S_\ell^*, W_\ell^*, P_\ell) & \geq R_u, \forall u \in \mathcal{U}_\ell \\
p_{u_1 u_2} & = 0, \forall u_1 \neq u_2 \in \mathcal{U}_\ell
\end{align*}
\]
Problem Decomposition

\(P_{\ell,2} \): Power control matrix \(P_{\ell}^* \) for fixed \(S_{\ell}^* \) and \(W_{\ell}^* \)

\[
\begin{align*}
\max_{\{W_{\ell}, P_{\ell}\}} & \quad \text{EE} (W_{\ell}^*, P_{\ell}) \\
\text{s.t.} & \quad \left[(S_{\ell}^* \circ W_{\ell}^*) P_{\ell} (S_{\ell}^* \circ W_{\ell}^*)^H \right]_{mm} \leq P_m, \forall m \in M_{\ell} \\
& \quad R_u (S_{\ell}^*, W_{\ell}^*, P_{\ell}) \geq R_u, \forall u \in U_{\ell} \\
& \quad p_{u_1u_2} = 0, \forall u_1 \neq u_2 \in U_{\ell}
\end{align*}
\]
ZF-MU-MIMO Precoding Design

\[P_{\ell,1}: \text{Precoding matrix } W_\ell^* \text{ for fixed } S_\ell^* \text{ and } P'_\ell \]

\[
W_\ell^* = \max_{W_\ell} \text{EE}(S_\ell^*, W_\ell, P'_\ell)
\]

\[(a) \quad \min_{W_\ell} C(S_\ell^*, W_\ell, P'_\ell) \equiv \min_{W_\ell} \frac{1}{c} \sum_{m \in M_\ell} \eta_m \left[(S_\ell^* \circ W_\ell) P'_\ell (S_\ell^* \circ W_\ell)^H \right]_{mm}
\]

\[(b) \quad \min_{W_\ell} \sum_{m \in M_\ell} \left[(S_\ell^* \circ W_\ell) P'_\ell (S_\ell^* \circ W_\ell)^H \right]_{mm}
\]

(a) rate does not depend on \(W_\ell \) due to a ZF property

(b) \(W_\ell \) affects only on TPD term for given \(S_\ell^* \) and \(P'_\ell \)

(c) equal capability of PA is preferred for high EE [Joung and Sun, 2013], \(c/\eta_m \) is assumed to be a constant
$P_{\ell,1}$: Precoding matrix W_ℓ^* for fixed S_ℓ^* and P'_ℓ

\[
W_\ell^* = \min_{W_\ell} \sum_{m \in M_\ell} \left[(S_\ell^* \circ W_\ell) P'_\ell (S_\ell^* \circ W_\ell)^H \right]_{mm}
\]

\[
= \min_{W_\ell} \left\| S_\ell^d W_\ell \sqrt{P'_\ell} \right\|_F^2
\]

1. $S_\ell^d = \text{diag}(s_{\ell,c}^*, \ell) \in \mathbb{R}^{M \times M}$
2. $s_{\ell,c}^* = \sum_{u \in U_\ell} s_{u}^{c,*}$

ZF-MU-MIMO precoding matrix as

\[
W_\ell = (H_\ell S_\ell^d)^\dagger + \text{null}(H_\ell S_\ell^d) A_\ell
\]

1. $H_\ell \in \mathbb{C}^{U_\ell \times M}$: a channel matrix of cluster ℓ that consists of row vectors h_u^r, $u \in U_\ell$
2. $A_\ell \in \mathbb{C}^{U_\ell \times U_\ell}$ is a U_ℓ-dimensional arbitrary matrix.
\[P_{\ell,1}: \text{Precoding matrix } W_\ell^* \text{ for fixed } S_\ell^* \text{ and } P'_\ell \]

\[W_\ell^* = \min_{W_\ell} \sum_{m \in M_\ell} [(S_\ell^* \circ W_\ell) P'_\ell (S_\ell^* \circ W_\ell)^H]_{mm} \]

\[= \min_{W_\ell} \| S_\ell^d W_\ell \sqrt{P}'_\ell \|^2_F \]

\[\checkmark \quad S_\ell^d = \text{diag}(s_\ell^{c,*}) \in \mathbb{R}^{M \times M} \]

\[\checkmark \quad s_\ell^{c,*} = \sum_{u \in U_\ell} s_\ell^{c,u} \]

ZF-MU-MIMO precoding matrix as

\[W_\ell^* = (H_\ell S_\ell^d)^\dagger \]

\[\checkmark \quad H_\ell \in \mathbb{C}^{U_\ell \times M}: \text{a channel matrix of cluster } \ell \text{ that consists of row vectors } h_u^r, u \in U_\ell \]

\[\checkmark \quad A_\ell \in \mathbb{C}^{U_\ell \times U_\ell} \text{ is a } U_\ell\text{-dimensional arbitrary matrix.} \]
Power Control

P\(_{\ell,2}\): Power control matrix \(P^*_\ell\) for fixed \(S^*_\ell\) and \(W^*_\ell\)

\[
P^*_\ell = \max_{P_\ell} \text{EE}(S^*_\ell, W^*_\ell, P_\ell)
\]

Subject to:
\[
\left[(S^d_\ell W^*_\ell)P_\ell (S^d_\ell W^*_\ell)^H\right]_{mm} \leq P_m, \forall m \in M_\ell
\]

\[
R_u(P_\ell) \geq R_u, \forall u \in U_\ell
\]

\[
p_{u_1 u_2} = 0, \forall u_1 \neq u_2 \in U_\ell.
\]

\[
\sum_{u \in U_\ell} R_u(P_\ell) \geq \xi C(S^*_\ell, W^*_\ell, P_\ell)
\]

- Using an additional variable \(\xi\)
- **Convex feasibility problem**
- **Bisection search** to find the optimal \(\xi\)
Power Control

$P_{\ell,2}$: Power control matrix P_{ℓ}^* for fixed S_{ℓ}^* and W_{ℓ}^*

\[
P_{\ell}^* = \max_{P_{\ell}} \xi
\]

subject to

\[
\left[(S_{\ell}^d W_{\ell}^*) P_{\ell} (S_{\ell}^d W_{\ell}^*)^H \right]_{mm} \leq P_m, \forall m \in \mathcal{M}_{\ell}
\]

\[R_u(P_{\ell}) \geq R_u, \forall u \in \mathcal{U}_{\ell}\]

\[p_{u_1 u_2} = 0, \forall u_1 \neq u_2 \in \mathcal{U}_{\ell}.
\]

\[
\sum_{u \in \mathcal{U}_{\ell}} R_u(P_{\ell}) \geq \xi C(S_{\ell}^*, W_{\ell}^*, P_{\ell})
\]

- Using an additional variable ξ
- Convex feasibility problem
- Bisection search to find the optimal ξ
Cont.: Heuristic Method

- Minimum required power to satisfy R_u with ZF-MU-MIMO precoding

$$\tilde{p}_{u,\ell} = \sigma^2 \left(2 \frac{R_u}{\Omega} - 1 \right)$$

- $\overline{p}_{u,\ell}$ is a ratio based on minimum required power for target rate [Joung and Sun, 2013] s.t.

$$\overline{p}_{u,\ell} = \frac{\tilde{p}_{u,\ell}}{\sum_{k \in \mathcal{U}_\ell} \tilde{p}_{k,\ell}}, \ \forall u \in \mathcal{U}_\ell$$

- $p_{u,\ell} = \alpha_\ell \overline{p}_{u,\ell}$

- α_ℓ: common power scaling factor for power limit of PAs and target rate of UEs in cluster ℓ

- Maximize EE lower bound
Cont.: Heuristic Method

\[P'_{\ell,2} : \alpha^*_\ell = \arg \max_{\alpha_\ell} \zeta(\alpha_\ell), \text{ s.t. } \alpha_{LB,\ell} \leq \alpha_\ell \leq \alpha_{UB,\ell} \]

\[\checkmark \quad \zeta(\alpha_\ell) = \frac{\Omega U_\ell \log_2(1+c_{1,\ell}\alpha_\ell)}{c_{2,\ell}\alpha_\ell+c_{3,\ell}} : \text{concave function} \]

\[\checkmark \quad c_{1,\ell} \triangleq \min_u \{ \overline{p}_{u,\ell} \} \sigma^{-2} \]

\[\checkmark \quad c_{2,\ell} \triangleq c \sum_{m \in M_\ell} \eta_m^{-1} \left[S_{d}^d W_\ell^* \overline{P}_\ell (S_{d}^d W_\ell^* H) H \right]_{mm} \]

\[\checkmark \quad c_{3,\ell} = \sum_{m \in M_\ell} (P_{cc1,m} + P_{cc2,m} \sum_{u \in U_\ell} R_u) \max_{u \in U_\ell} s_{mu} + \Omega P_{sp1} [\dim(W_\ell)]^{\beta+1} + M_\ell \Omega P_{sig} + \Omega P_{sp2}/L + P_{fix}/L \]

\[\checkmark \quad \alpha_{LB,\ell} = \sigma^2 \left(2 \frac{R_u}{\Omega} - 1 \right) / \overline{p}_{u,\ell} \text{ from QoS constraint} \]

\[\checkmark \quad \alpha_{UB,\ell} = \min_{m \in M_\ell} \left(P_m / \left[S_{d}^d W_\ell^* \overline{P}_\ell (S_{d}^d W_\ell^* H) H \right]_{mm} \right) \text{ from power constraint} \]
Closed form solution:

\[\alpha_o = \frac{1}{c_1} \left(\exp \left(1 + W \left(\frac{1}{\exp(1)} + \frac{c_1 c_3}{c_2 \exp(1)} \right) \right) - 1 \right) \]

\[\alpha^* = [\alpha_o]^{\alpha_{UB}}_{\alpha_{LB}} \]

\[P^*_{heuristic} = \alpha^* \overline{P} \]
Algorithm 1: Clustering threshold γ adaptation

1. Initial setup: $\gamma, \delta > 0$, stop = 0, $q = 0$, M_u, and $Q_C \geq 0$.
2. compute EE_p with γ: M_u Adaptation Algorithm 2.
3. compute EE_c with $\gamma = \gamma + \delta$: M_u Adaptation Algorithm 2.
4. if $EE_c > EE_p$ then
5. $EE_p = EE_c$ and $\xi = 1$.
6. else
7. compute EE_c with $\gamma = \gamma - 2\delta$: M_u Adaptation Algorithm 2.
8. if $EE_c > EE_p$ then $EE_p = EE_c$ and $\xi = -1$.
9. else stop = 1 end if
10. end if
11. while stop = 0 & $q < Q_C$ do
12. compute EE_c with $\gamma = \gamma + \xi\delta$: M_u Adaptation Algorithm 2.
13. if $EE_c > EE_p$ then $EE_p = EE_c$.
14. else stop = 1 end if
15. $q = q + 1$
16. end while
Algorithm 2: M_u adaptation algorithm for AS

1. Initial setup: $M_u = 1, \forall u \in U, q = 0, \gamma$, and $Q_{AS} \geq 0$.
2. **while** feasibility = 0 & $q < Q_{AS}$ **do**
3. DA Selection Algorithm 3.
4. DA Clustering Algorithm 4 with a threshold γ.
5. feasibility = 1
6. **for** cluster $\ell = 1, \ldots, L$ **do**
7. precoding: $W_\ell = (H_\ell S_\ell^d)^\dagger$.
8. power control: Bisection Search Algorithm 5 or $P^\text{heuristic} = \alpha^*$.
9. **if** power control is infeasible & $\sum_{u \in U} M_u < M$

10. **then** add one additional DA to UE $u \in U_\ell$ who has the weakest channel gain, i.e., $M_u = M_u + 1$ where $u \in U_\ell$ s.t., $u = \arg\min_{u \in U_\ell} |h_{um}|$.
11. feasibility = 0 **end if**
12. **end for**
13. $q = q + 1$
14. **end while**
Algorithm 3 : CGB/MDB-Greedy DA selection algorithm

1. Initial setup: $U = \{1, \ldots, U\}$, $M = \{1, \ldots, M\}$, $s_{mn} = 0, \forall m \in M, \forall u \in U, \mathcal{M}_u = \emptyset, \forall u \in U$, and given M_u's.

2. While $U \neq \emptyset$ do
3. Find $\{m^*, u^*\} = \operatorname{arg\ max}_{m \in M, u \in U} |h_{um}|$ for CGB, $\operatorname{min}_{d_{um}}$ for MDB
4. Set $s_{m^* u^*} = 1$, $M = M \setminus m^*$ and $\mathcal{M}_{u^*} = \mathcal{M} \cup m^*$
5. If $|\mathcal{M}_{u^*}| = M_{u^*}$ then
6. $U = U \setminus u^*$
7. End if
8. End while
Algorithm 4: DA clustering algorithm

1. Initial setup: distance $d_0 = 0$, clusters $\mathcal{U}_\ell = \{\ell\}$ where $\ell \in \mathcal{L} = \{1, \ldots, U\}$, and given γ.
2. while $d_0 < \gamma$ do
3. find the distance of most closest pair of clusters \mathcal{U}_ℓ and $\mathcal{U}_{\ell'}$, i.e., $d_0 = \min_{\ell, \ell' \in \mathcal{L}, \ell \neq \ell'} D(\mathcal{U}_\ell, \mathcal{U}_{\ell'})$.
4. if $d_0 < \gamma$ then
5. merge clusters as $\mathcal{U}_\ell = \mathcal{U}_\ell \cup \mathcal{U}_{\ell'}$.
6. update \mathcal{L}.
7. end if
8. end while
Algorithm 5: Bisection search algorithm: Per-cluster optimal power control for MU

1. setup: \(\xi_{LB} = 0 \), \(\xi_{UB} \approx \infty \), and a tolerance value, \(\delta > 0 \)
2. while \(\xi_{UB} - \xi_{LB} > \delta \) do
3. \(\xi \leftarrow (\xi_{UB} - \xi_{LB})/2 \)
4. Solve convex feasibility problem and find (update) \(P^*_\ell \).
5. if infeasible then \(\xi_{UB} \leftarrow \xi \)
6. else \(\xi_{LB} \leftarrow \xi \) end if
7. end while
8. \(P_{optimal, \ell} = P^*_\ell \)
Simulation Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell model two square grid cells</td>
<td>(1km²)</td>
</tr>
<tr>
<td>Number of DAs/CAs</td>
<td>25 ≤ M ≤ 900</td>
</tr>
<tr>
<td>Intra-antenna distance (IAD)</td>
<td>from 33 m to 200m</td>
</tr>
<tr>
<td>Number of UEs</td>
<td>2 ≤ U ≤ 20</td>
</tr>
<tr>
<td>UE distribution Uniform (10⁴—realization)</td>
<td></td>
</tr>
<tr>
<td>Path loss exponent</td>
<td>μ = 3.76</td>
</tr>
<tr>
<td>Small scale fading</td>
<td>h_{um} \sim \mathcal{CN}(0, 1)</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>Ω = 10MHz</td>
</tr>
<tr>
<td>Target rate</td>
<td>R_u = 10Mb</td>
</tr>
<tr>
<td>Maximum Tx power</td>
<td>P_m = 17dBm</td>
</tr>
<tr>
<td>AWGN standard deviation</td>
<td>σ² = −174dBm/Hz</td>
</tr>
<tr>
<td>Power loss coefficient</td>
<td>c = 2.63</td>
</tr>
<tr>
<td>eRF circuit pow.cons.</td>
<td>P_{cc1,m} = 5.7W</td>
</tr>
<tr>
<td>oRF circuit pow.cons.</td>
<td>P_{cc2,m} = 0.5/0pW/bit/s</td>
</tr>
<tr>
<td>Fixed pow.cons.</td>
<td>P_{fix} = 34 W</td>
</tr>
<tr>
<td>Signal processing pow.cons.</td>
<td>P_{sp1} = 0.94 \times 1/1.1µW/Hz</td>
</tr>
<tr>
<td>Signal processing pow.cons.</td>
<td>P_{sp2} = 0.54 \times 1/1.1µW/Hz</td>
</tr>
<tr>
<td>Signaling pow.cons./antenna</td>
<td>5 ≤ P_{sig} ≤ 500nW/Hz</td>
</tr>
<tr>
<td>preprocessing pow.cons. ratio</td>
<td>0 ≤ β ≤ 2</td>
</tr>
<tr>
<td>PA efficiency</td>
<td>η_m = 0.08/0.6</td>
</tr>
<tr>
<td>Clustering threshold</td>
<td>−∞ ≤ γ ≤ ∞dB</td>
</tr>
</tbody>
</table>
Simulation Visualization

(outage: cell boundary)

Jingon Joung
Energy-Efficient Large-scale DAS (L-DAS)
\[M = 400, \ U = 20, \ P_{\text{sig}} = 50\text{nW/Hz} \]
$M = 400$, $\beta = 0.5$, $P_{\text{sig}} = 50\text{nW/Hz}$

Graph:
- **x-axis:** Number of UEs, U
- **y-axis:** Average energy efficiency Mb/J

Lines and markers indicate different scenarios:
- **Optimal pow ctrl with adaptation**
- **Heuristic pow ctrl with adaptation**
- **L-CAS with $\beta = 0.5$**

Legend:
- $\gamma = \infty \text{dB}$ (full MU, single cluster)
- $\gamma = 22 \text{dB}$
- $\gamma = -\infty \text{dB}$ (full SU, U clusters)
$U = 20, \beta = 0.5, \gamma = 22\,\text{dB}$

![Graph showing average energy efficiency vs. number of transmit DAs, M, with different power control methods and signal powers.]

- **Optimal power control**
- **Heuristic power control**

- $P_{\text{sig}} = 5\,\text{nW/Hz}$
- $P_{\text{sig}} = 50\,\text{nW/Hz}$
- $P_{\text{sig}} = 500\,\text{nW/Hz}$

L-CAS with $P_{\text{sig}} = 5\,\text{nW/Hz}$
1. Introduction
 - Green Wireless Communications
 - Efficiency
 - Spectral Efficiency & Energy Efficiency Tradeoff

2. Large-scale Distributed-Antenna Systems (L-DAS)
 - EE of L-DAS
 - EE Maximization Problem
 - Proposed Algorithms
 - Performance Evaluation

3. Conclusion
Summary

- EE-aware large-scale distributed antenna system
- EE-aware strategies including
 - ✓ Distributed antenna (DA) selection methods
 - ✓ DA clustering method
 - ✓ ZF-based MU-MIMO precoding
 - ✓ Power control methods
- Further Work regarding Deployment, Implementation, and Operation of L-DAS
 - ✓ cell planning
 - ✓ regular/irregular deployment of DAs
 - ✓ synchronization for large cluster
 - ✓ robustness against CSI error
 - ✓ infrastructure cost for wired optical fronthaul
 - ✓ capital expenditure and operational expenditure
Summary

- EE-aware large-scale distributed antenna system
- EE-aware strategies including
 - Distributed antenna (DA) selection methods
 - DA clustering method
 - ZF-based MU-MIMO precoding
 - Power control methods

- Further Work regarding Deployment, Implementation, and Operation of L-DAS
 - Cell planning
 - Regular/irregular deployment of DAs
 - Synchronization for large cluster
 - Robustness against CSI error
 - Infrastructure cost for wired optical fronthaul
 - Capital expenditure and operational expenditure
Thank You

http://www1.i2r.a-star.edu.sg/~jgjoung

jgjoung@i2r.a-star.edu.sg

Reference II

EARTH–Energy aware radio and network technologies.

On the energy efficiency-spectral efficiency trade-off over the MIMO Rayleigh fading channel.

A survey on power-amplifier-centric techniques for spectrum and energy efficient wireless communications.
submitted to IEEE Commun. Surveys & Tutorials.
Tradeoff of spectral and energy efficiencies: Impact of power amplifier on
OFDM systems.
In Proc. IEEE Global Commun. Conf. (GLOBECOM), pages 3274–3279,
Anaheim, CA, USA.

Power amplifier switching (PAS) for energy efficient systems.
IEEE Wireless Commun. Lett.
to be published.

Spectral efficiency and energy efficiency of OFDM systems: Impact of power
amplifiers and countermeasures.
Power efficient resource allocation for downlink OFDMA relay cellular networks.

Energy efficient power control for distributed transmitters with ZF-based multiuser MIMO precoding.

On the energy efficiency-spectral efficiency trade-off in the uplink of CoMP system.

Figure 1: 3. Amplitude-to-amplitude (AM/AM) distortion characteristics.
Figure 1: 3. Amplitude-to-amplitude (AM/AM) distortion characteristics.

Distortion: memoryless baseband PA models
Figure 2: 4. Maximum output power (at the linear region) versus P_{DC}.

\[\eta_{PAE} < 100\% \]